- I. Anforderungen an PE-Rohre für den Deponiebau
- II. Schadensfälle an Dränrohren in Deponien
- III. Versuchsmaterialien
- IV. Untersuchungsprogramm
 - i. Full-Notch-Creep-Test (FNCT)
 - ii. Strain Hardening Test
 - iii. Hochdruck-Autoklavenversuche
- V. Zusammenfassung und Ausblick

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Dränrohre in Deponien

≥2·d_a

 d_a = Rohraußendurchmesser

Kies 16/32 d_a = Rohraußendurchmesser $2\alpha = 120^{\circ}$ & Dränschicht

z. B. Sand 0/2a

DIN 19667

Anforderungen an PE-Rohre für den Deponiebau

Nachweis einer Nutzungsdauer von mind. 100 Jahren

- 1. Statische Bemessung (ATV M 127 / DWA A 127)
 - Festigkeitsnachweis
 - Verformungsnachweis
- 2. Oxidationsbeständigkeit
 - $OIT_{200^{\circ}C} > 30 min (DIBt)$
- 3. Spannungsrissbeständigkeit DIRt.

- für PE 80: $t_{FNCT} \ge 100 \text{ h}$ - für PE 100: $t_{FNCT} \ge 300 \text{ h}$

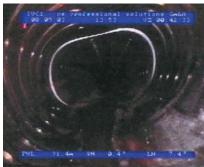
SKZ/TÜV-LGA Güterichtlinie:

t_{FNCT} ≥ 1600 h (für Deponiebasis) SKZ/TÜV – LGA GÜTERICHTLINIE
ROHRL; ROHRLETUNGSTEILE; SCHÄCHTE UND BAUTEILE IN DEPONIEN
JUNI 2010

www.skz.de

Produktqualität - Weiterbildung - Forschung - Zertifizierung

Lebensdauer von Kunststoffbauteilen



Lebensdauer ist begrenzt durch Bruchversagen oder unzulässige Verformung

Verformungen von PE-Leitungen in Deponien

extreme Verformungen aber keine Risse

Quelle: Edenberger, W. (2010). Rissbildung in PE-Leitungen. Workshop über "Risse in Deponiesickerwasserleitungen aus PE", AVL und ICP, 18. Mai 2010 im Landratsamt Ludwigsburg, Seite 17-24.

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Risse in PE-Leitungen mit Schlitzen und Löchern

Dränschlitz

Dränloch

Dränloch

Quelle: Edenberger, W. (2010). Rissbildung in PE-Leitungen. Workshop über "Risse in Deponiesickerwasserleitungen aus PE", AVL und ICP, 18. Mai 2010 im Landratsamt Ludwigsburg, Seite 17-24.

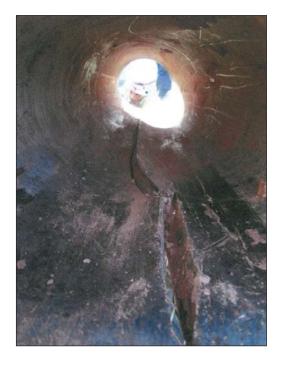
Scherbenbildung in PE-Leitungen

Quelle: Edenberger, W. (2010). Rissbildung in PE-Leitungen. Workshop über "Risse in Deponiesickerwasserleitungen aus PE", AVL und ICP, 18. Mai 2010 im Landratsamt Ludwigsburg, Seite 17-24.

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Rissbildung in PE-Rohren ohne Lochung bzw. Schlitzung



Quelle: Edenberger, W. (2010). Rissbildung in PE-Leitungen. Workshop über "Risse in Deponiesickerwasserleitungen aus PE", AVL und ICP, 18. Mai 2010 im Landratsamt Ludwigsburg, Seite 17-24.

Offener Riss in der Sohle eines PE-Rohrs

Laut Edenberger (2010) sind in Deutschland

15 Deponien mit Rissbildung in PE-Leitungen bekannt.

Quelle: Maier, P. (2010): Risse in Deponiesickerwasserleitungen aus PE – Problemschilderung am Beispiel der Deponie "Burghof". Workshop über "Risse in Deponiesickerwasserleitungen aus PE", AVL und ICP, 18. Mai 2010 im Landratsamt Ludwigsburg, Seite 1-10.

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Versuchsmaterialien

Material	Geometrie	Außen- durchmesser	Wanddicke	Alter	Anmerkung
A	Vollwandrohr	280 mm	28 mm	ca. 20 Jahre	Riss in Sohle, ca. 5 % verformt, Dauertemperatur 50 - 60 °C
В	Dränrohr geschlitzt	250 mm	25 mm	20 - 25 Jahre	stark verformt durch ca. 20 m Müllhöhe
C ₁	T-Rohrstück	90 mm	12 mm	ca. 15 Jahre	unbeschädigt
C ₂	angeschweißtes Rohrstück		9 mm		
D	Vollwandrohr	110 mm	10 mm	neu	PE 80
E	Vollwandrohr	110 mm	10 mm	neu	PE 100

Vollwandrohr (Material A)

d_A = 280 mm, ca. 20 Jahre alt, Riss in Sohle

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Dränrohr, geschlitzt (Material B)

 $d_A = 250 \text{ mm}, 20-25 \text{ Jahre alt}$

Vollwandrohr mit T-Stück (Material C)

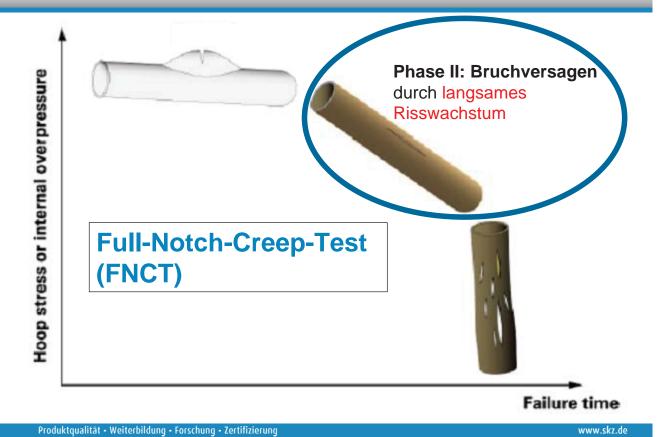
 $d_A = 90 \text{ mm},$ ca. 15 Jahre alt

Produktqualität - Weiterbildung - Forschung - Zertifizierung

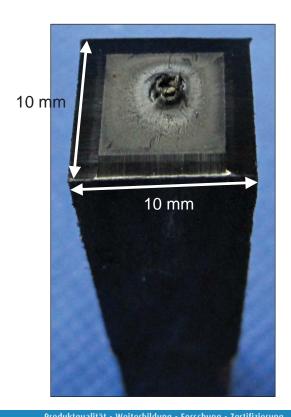
www.skz.de

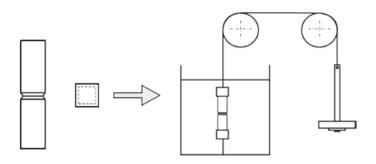
Zeitstandverhalten von Kunststoffrohren

Hoop stress or internal overpressure

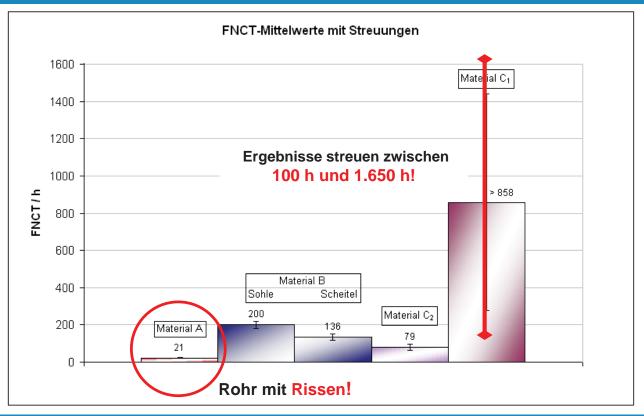


Phase III: sprödes Versagen durch thermo-oxidativen Abbau des Polymers


Failure time

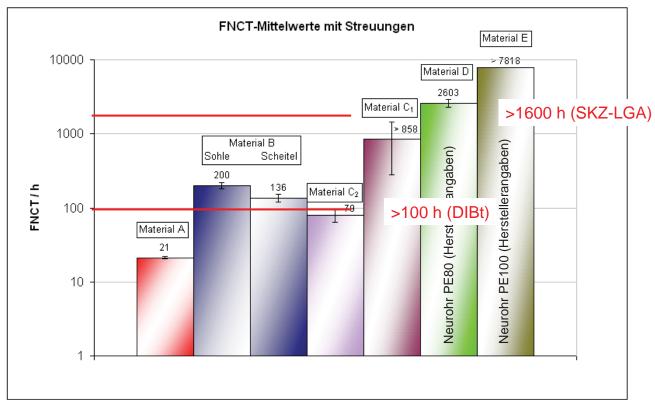

Bruchversagen durch langsames Risswachstum

Full-Notch-Creep-Test (FNCT) ISO 16770, DIN EN 12814-3



Zeitstandprüfung einer vierseitig gekerbten Rechteckprobe mit 4 MPa bei 80°C in 2%-iger Netzmittellösung

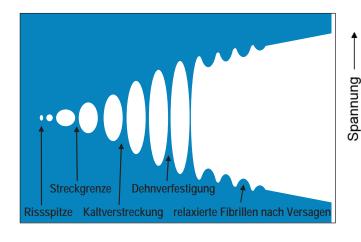
FNCT-Zeiten der Deponierohre

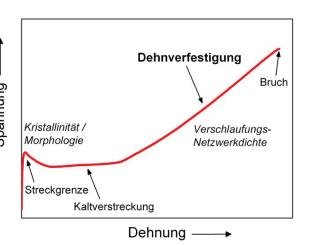



Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

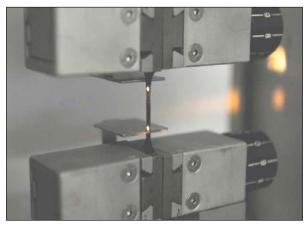
FNCT-Zeiten der Deponierohre




Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Strain Hardening Methode

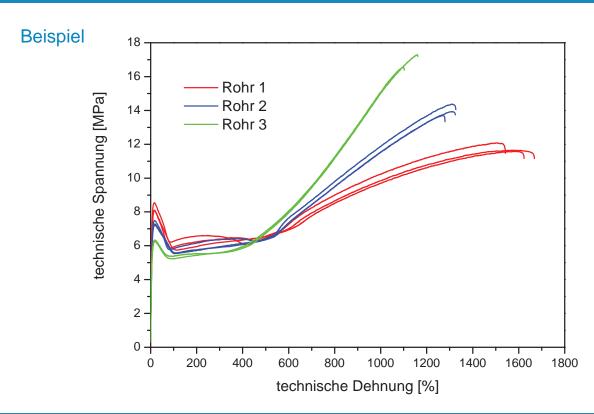


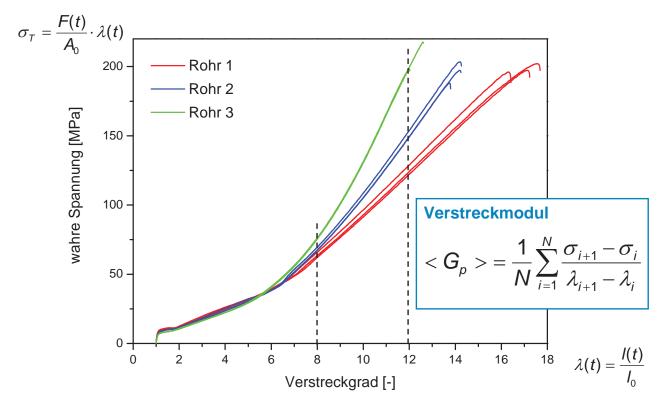
Analogie der

mikroskopischen Verstreckung der Fibrillen im Riss und der Verstreckung des Probekörpers im Zugversuch

Zugversuch bei 80°C

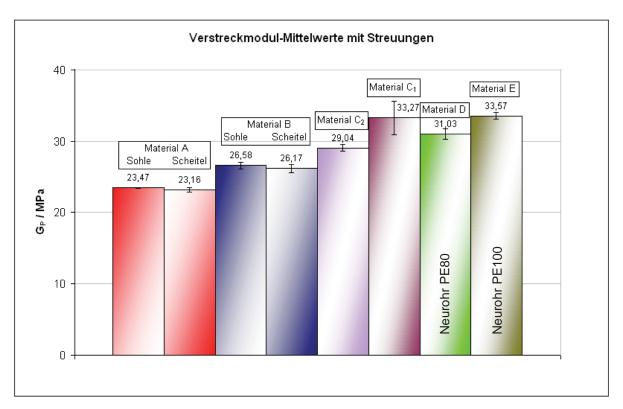
- Universalprüfmaschine mit Temperierkammer
- Kraftmessdose 500 N
- Optische Dehnungsmessung
- T = 80 °C
- v = 10 mm/min
- Zugstab: ISO 527-2, Typ 5B


Produktqualität - Weiterbildung - Forschung - Zertifizierung

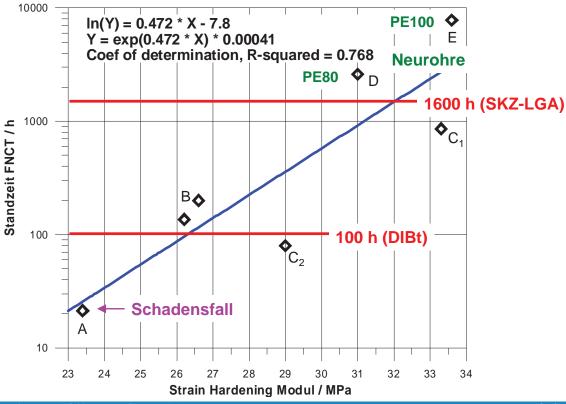

www.skz.de

Verstreckverhalten bei 80°C

Technische Spannung



Produktqualität - Weiterbildung - Forschung - Zertifizierung


www.skz.de

Verstreckmodul der Deponierohre

FNCT vs. Verstreckmodul

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Thermo-oxidatives Versagen

Material	OIT _{200°C} im Anlieferungszustand / min
Α	58,8
В	86,6
C ₁	48,1
C ₂	81,8
D	128,4
E	137,8

Anforderung nach DIBt bei Anwendungstemperatur von 20°C:

OIT_{200°C} > 30 min

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Hochdruck-Autoklavenversuche

DIN EN ISO 13438

- Prüfung in einer wässrigen Lösung mit basischem Milieu (pH = 10)
- bei erhöhter Temperatur (typisch für PE: 60 °C bis 90 °C) hier: 80°C
- und erhöhtem Sauerstoffdrucks (typisch: 10 bar bis 50 bar) hier: 50 bar

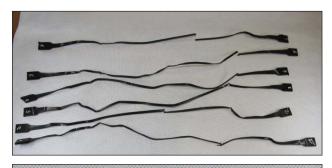
Beschleunigung der Oxidation

→ Lebensdauerabschätzung nach vertretbaren Versuchsdauern

SKZ:

- 6 Autoklaven: Volumen je 9 l
- 2 Autoklaven: Volumen je 9 l (06/12)
- 2 Autoklaven: Volumen je 59 I (07/12)

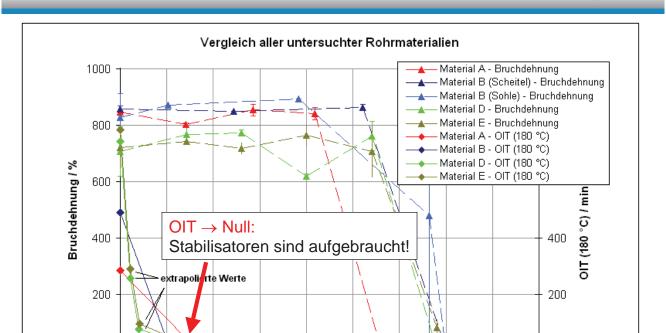
Versuchsdurchführung


- Einlagerung von Zugstäben im Autoklav (evtl. bei unterschiedlichen Temperaturen und Sauerstoffdrücken)
- Entnahme von Probekörpern und Durchführung mechanischer Prüfungen in Zeitintervallen von mehreren Tagen bzw. Wochen
- OIT-Messungen in Abhängigkeit der Einlagerungszeit zur Bewertung des Stabilisatorverbrauchs

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Zugversuchsproben nach verschiedenen Alterungsdauern



Ungealterte Zugstäbe mit duktilem Versagen

Gealterte Zugstäbe mit sprödem Versagen

Hochdruck-Autoklavenversuche (80°C/50bar)

Produktqualität - Weiterbildung - Forschung - Zertifizierung

10

O

www.skz.de

0

45

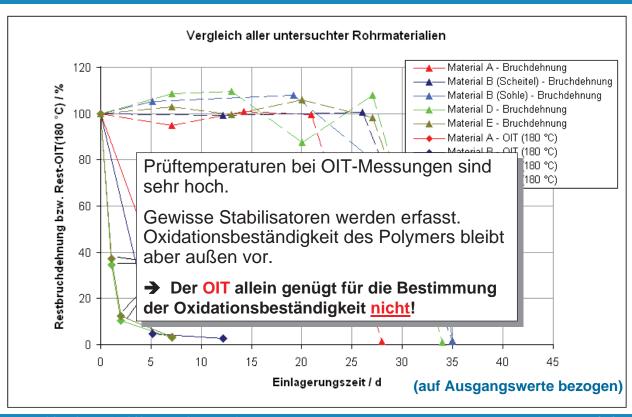
(absolute Werte)

40

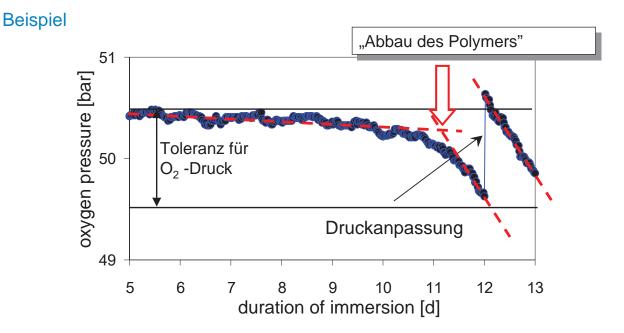
Hochdruck-Autoklavenversuche (80°C/50bar)

15

20

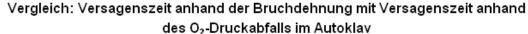

25

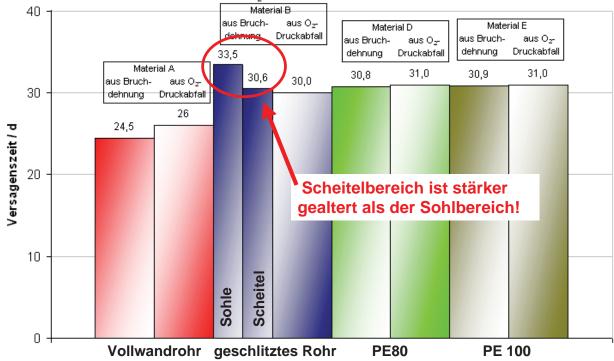
Einlagerungszeit / d


30

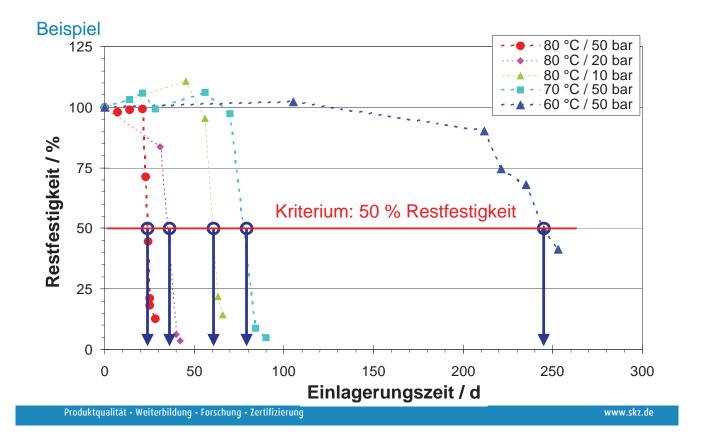
35

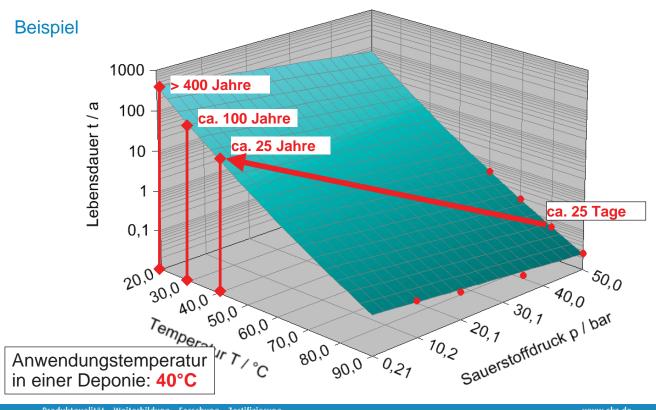
Abfall des Sauerstoffdrucks


→ Der Abfall des Sauerstoffdrucks zeigt, dass die Stabilisierung (z. B. Phenol) verbraucht ist und die Oxidation des Polymers beginnt.


Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de


Bruchdehnung und O₂-Druckabfall



Variation der Prüfbedingungen

Lebensdauerabschätzung für PE-Rohr: Variation von Prüftemperatur und von Sauerstoffdruck

Zusammenfassung - Zustandsbewertung

SKZ

- 1. <u>Spannungsrissbeständigkeit</u> der ausgebauten Rohre entspricht nicht immer den heutigen Anforderungen
 - FNCT sehr zeitaufwendig und teilweise große Streuung
 - Strain Hardening Test liefert schnelle Aussagen (geringe Streuung)
- 2. <u>OIT-Messungen</u> allein geben keine Aussage über die Oxidationsbeständigkeit eines PE-Rohrs
- 3. <u>Hochdruck-Autoklavenversuche</u> erlauben eine beschleunigte Alterung unter anwendungsnahen Temperaturen
 - Scheitelbereich im Rohr stärker gealtert als Sohlbereich
 - Restlebensdauer von mehreren Jahrzehnten für Anwendungstemperaturen von ca. 40 °C ist für die ausgebauten Rohre fragwürdig

Produktqualität - Weiterbildung - Forschung - Zertifizierung

www.skz.de

Ausblick

- Statischer Festigkeits- und Verformungsnachweis (nach ATV M 127 / DWA A 127) über FEM-Analyse
- 2. Abschätzung der Restlebensdauer von alten Deponierohren über zeitraffende Prüfmethoden
- Überprüfung der Materialanforderungen für eine Mindestlebensdauer von 100 Jahren bei 40 °C

